Design of Walls for Axial Load and Outof-Plane Loads

TMS20220223

February 16, 2022

W. Mark McGinley, Ph. D., P.E., FASTM, FTMS Professor and Endowed Chair, University of Louisville, Department of Civil Engineering

The Masonry Society is a registered Provider with the American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of completion for non-AIA members are available upon request.

This program is registered with AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

During this session, allowable stress design of masonry walls loaded with out-of-plane loads and axial loads will be reviewed. Differences in the Allowable Stress design provisions and strength design procedures will be briefly discussed, especially the secondary bending moments.

Learning Objectives:

- 1. Review the design of walls loaded with out-of-plane with axial loads, including a brief overview of unreinforced masonry design.
- Describe basic differences between allowable stress design and strength design for such walls
- 3. Development of ASD Interaction diagrams will be presented.
- 4. Provide examples of masonry walls for common thicknesses, reinforcing and load and loads.

Learning Objectives

- Describe basic differences between allowable stress design and strength design for Out of plane loading on walls
- Review the ASD design of walls loaded with out-of-plane with axial loads

Combined loading Out of Plane Loading on Masonry Walls - ASD

- For unreinforced Masonry
- Interaction Diagram Only method allowed by Code

Allowable Stress Design

- No second-order analysis required
- Allowable tension stress controls
 - Wind load: approximately the same reinforcement
 - Seismic load: the 0.7 factor for seismic in ASD causes SD to often require slightly less reinforcement
- Allowable masonry stress controls
 - ASD is inefficient, with SD requiring significantly less reinforcement

8.2 in M	NSJ	C-A	SD L	JRM	Masonry
sumptions (St	resses	on net s	ection) ·	$-f_a = \frac{P}{A_n}$,	$f_b = \frac{M}{S_n}$
let flexural ter	nsion st	ress lim	ited - Ta	able 8.2.1	.4 $f_t \leq F_t$
Table 8.2.4.2 — Allowable flexu	ral tensile stress	es for clay and co	ncrete masonry, p	si (kPa)	1
Direction of flexural tensile		Mort	tar types		_
stress and masonry type	Portland ce mortar	ment/lime or cement	Masonry cemer portland	nt or air entrained cement/lime	
ľ	M or S	N	M or S	N	1
Normal to bed joints					1
Solid units	53 (366)	40 (276)	32 (221)	20 (138)	
Hollow units ¹					
Ungrouted	33 (228)	25 (172)	20 (138)	12 (83)	
Puny grouted	65 (448)	63 (434)	61 (420)	58 (400)	
bond					
Solid units	106 (731)	80 (552)	64 (441)	40 (276)	
Hollow units		Sec. 10 Sec. 1		untra conservati	
Ungrouted and partially grouted	66 (455)	50 (345)	40 (276)	25 (172)	
Fully grouted	106 (731)	80 (552)	64 (441)	40 (276)	
Parallel to bed joints in masonry					
Continuous grout section parallel to bed joints	133 (917)	133 (917)	133 (917)	133 (917)	
provide the sect points			1	111	

Ch. 8.2 in MSJC-ASD URM Masonry

Allowable Stress Interaction Diagrams Walls – Singly Reinforced

- Allowable stress interaction diagram
- Linear elastic theory tension in masonry it is ignored, plane sections remain plane
- Limit combined compression stress to $F_b = 0.45 F'_m$
- $P \leq P_a$
- d usually = t/2 no compression steel since not tied, ignore in compression
- Assume a kd value and limit stresses

Allowable Stress Interaction Diagrams OOP

Assume stress gradient range A:

All section in compression Kd>thickness of wall

Get equivalent force-couple about center line

$$P_a = 0.5(f_{m1} + f_{m2})A_n$$

 $M_a = (f_{m1} - f_{m2})/2(S), S = bt^2/6$

Note at limit $-f_{m1}$ and $f_{m2} \le F_b$ (set $f_{m1} = F_b$)

Note much of this is from Masonry Course notes by Dan Abrams

Also P_a cut off

ASD Interaction Diagram

Set up

Spreadsheet

Guess at amount of steel

How?

I use first trial

 A_s About = $M_{max}/(0.9 dF_s)$

More axial force, less stee

Try # 5 at 48 in. OC

0.068 by equation 0.066 in² / ft Provided

AC CT TAWAIL W/ No. F. C	401- (0-	ato no al)		NOTERAC		6 - f \A/ - II	
16.67 Ft Wall W/ NO. 5 @	46IN (Ce	nterea)		NOTE BASED ON THE OF Wall and		NOLEFFEC	
total depth, t	7.625			Wall Height, h		16.67	feet
fm, tprimem	2000			Radius of C	Syration, r	2.20	in
Em	1800000				h/r	90.9	
Fb	900.00			Reduction	Factor, R	0.578	
Es	29000000		Allov	vable Axial S	Stress, Fa	289	psi
Fs	32000	0 Net Area, An 365.7 in/2					in^2
d				le Axial C	Compr, Pa	26429	lb
kbalanced	0.311828						
tensile reinforcement, As/beff	0.31	#5 @ 48 Ce	entered				
width, beff	48						
because compression reinforce	tied, it is not	t counted				b in b in b in b psi i m² b psi b ps	
	k	kd	fb	Cmas	fs	Axial Force	Moment
			(psi)	(lb)	(psi)	(lb)	(lb-in)
Points controlled by steel	0.01	0.04	20	18	-32000	-2475	17
	0.05	0.19	105	478	-32000	-2360	448
	0.1	0.38	221	2019	-32000	-1975	1861
	0.15	0.57	351	4811	-32000	-1277	4356
	0.2	0.76	497	9087	-32000	-208	8084
	0.25	0.95	662	15145	-32000	1306	13232
	0.24	0.92	627	13774	-32000	963	12078
	0.3	1.14	851	23366	-32000	3362	20044
Points controlled by masonry	0.311828	1.19	900	25679	-32000	3940	21931
1	0.4	1.53	900	32940	-21750	6549	27210
	0.5	1.91	900	41175	-14500	9170	32704
1	0.6	2.29	900	49410	-9667	11603	37675
	0.8	3.05	900	65880	-3625	16189	46047
	1	3.81	900	82350	0	20588	52327
	1.2	4.58	900	98820	0	24705	56513
	1.4	5.34	900	115290	0	28823	58606
	1.6	6.10	900	131760	0	32940	58606
	1.8	6.86	900	148230	0	37058	56513
	2	7.63	900	164700	0	41175	52327
Pure compression			900	329400	0	329400	C
Axial Force Limits					-	26429	0
						26429	58606

ASD Interaction Diagram

16.67 Ft Wall w/ No. 5 @	248in (Ce	ntered)		NOTE BAS	ED ON 1	t of Wall and	Not EFFECT	
total depth, t	7.625			Wal	I Height, h	16.67	feet	
fm, fprimem	2000			Radius of	Gyration, r	2.20	in	
Em	1800000				h/r	90.9		
Fb	900.00			Reduction	Factor, R	0.578		
Es	29000000		Allow	able Axial	Stress, Fa	289	psi	
Fs	32000			Ne	t Area, An	365.7	in^2	
d	3.8125		Allow	able Axial (Compr, Pa	26429	lb	
kbalanced	0.311828							
tensile reinforcement, As/beff	0.31	#5 @ 48 Ce	ntered					
width, beff	48							
because compression reinforce	ement is not	tied, it is not	t counted					
	k	kd	fb	Cmas	fs	Axial Force	Moment	
			(psi)	(lb)	(psi)	(lb)	(lb-in)	
Points controlled by steel	0.01	0.04	20	18	-32000	-2475	17	
	0.05	0.19	105	478	-32000	-2360	448	
	0.1	0.38	221	2019	-32000	-1975	1861	
Fs/n kd	0.15	0.57	351	4811	-32000	-1277	4356	
fb	0.2	0.76	497	9087	-32000	-208	8084	
TD	0.25	0.95	662	15145	-32000	1306	13232	
	0.24	0.92	627	13774	-32000	963	12078	
	0.3	1.14	851	23366	-32000	3362	20044	
Points controlled by masonry	0.311828	1.19	900	25679	-32000	3940	21931	
	0.4	1.53	900	32940	-21750	6549	27210	
	0.5	1.91	900	41175	-14500	9170	32704	
	0.6	2.29	900	49410	-9667	11603	37675	
	0.8	3.05	900	65880	-3625	16189	46047	
	1	3.81	900	82350	0	20588	52327	
	1.2	4.58	900	98820	0	24705	56513	
kd	1.4	5.34	900	115290	0	28823	58606	
	1.6	6.10	900	131760	0	32940	58606	
fb	1.8	6.86	900	148230	0	37058	56513	
	2	7.63	900	164700	0	41175	52327	
Pure compression			900	329400	0	329400	0	
Axial Force Limits						26429	0	

ASD Interaction Diagram 8 in Wall, 16.67 ft high, #5 @ 48 in. Centered c) lb per foot of length 50000 15000 Particular 15000 Capacity -B-D+W MidH Axial Cut off 0.6D+0.6W -5000 M, Ib-in per foot of length

Interaction Diagrams

Masonry Design Guide 2016 – Chapter 11 Impact of Partial Grouting

When constructing the interaction diagrams, we assumed solid grouted walls. What happens when the wall is partially grouted?

- Typically, the width of a grouted cell and adjoining webs can be assumed to be 8 in. Some designers will use a slightly greater width but 8 in. is convenient. Thus, the the effective width in 12 inches for a bar at 48 inches is (8 in./48 in.)(12 in./1 ft) = 2 in/ft.
- When the kd is in the face shell of the wall, there is no difference between solid and grouted walls

• The following diagram shows the impacts that partially grouted walls have on the interaction diagram.

Interaction Diagrams

Masonry Design Guide 2016 – Chapter 11 Impact of height

The interaction diagram can be constructed neglecting slenderness effects (h = 0). Slenderness effects will reduce the maximum axial load, or put a cap on the interaction diagram. The maximum axial load is shown for different wall heights. An average radius of gyration of r = 2.66 in. partially grouted , as given in NCMA TEK 14-1B, is used to calculate slenderness effects

Reinforced Maso Rarely governs wall des	nry Walls OOP – Shear sign OOP	
 Shear stress is computed a f_v = V/A_{nv} Allowable shear stresses 	as: (8-24)	
$F_v = (F_{vm} + F_{vs})\gamma_g$ $\gamma_g = 0.75$ for partially grouted	(8-25) d shear walls, 1.0 otherwise.	
	38	3

Shear Stresses	
 Allowable shear stress resisted by the masonry Special reinforced masonry obser walls 	
• Special remoted masonry shear wais $F_{vm} = \left(\frac{1}{4}\right) \left[4 - 1.75 \left(\frac{M}{Vd_v}\right)\right] \sqrt{f'_m} + 0.25 \frac{P}{A_n} $ (8-28)	
• All other masonry $F_{vm} = \left(\frac{1}{2}\right) \left[4 - 1.75 \left(\frac{M}{Vd_n}\right)\right] \sqrt{f'_m} + 0.25 \frac{P}{A_n} $ (8-29)	
M/Vd_v is positive and need not exceed 1.0.	
Cut offs	
Allowable shear stress limits:	
• $M/Vd_v \leq 0.25$	
$F_{\nu} \le \left(3\sqrt{f_m'}\right)\gamma_g \tag{8-26}$	
• $M/Vd_v \ge 1$	
$F_{\nu} \le \left(2\sqrt{f_m'}\right)\gamma_g \tag{8-27}$	
	39

<text><text><equation-block><text><equation-block><text><text><text><text>

Spreadsheet for calculating	allowable-stres:	s M-N diagram for soli	d masonry wall			
ZIFLWallw/4-INO.3			Wall Hoight h	21.00	foot	
fm forimem	2000		Radius of Gyration r	21.00	in	
Em	180000		h/r	11/ 5		
Eh	000000		Reduction Eactor R	0 373		
Fs	2900000	Alloy	vable Avial Stress Fa	187	nsi (MS IC8	3421)
Fs	32000	7 4104	Net Area An	91.5	in^2	
4 10	3 8125	Allow	vable Axial Compr. Pa	17086	lb	
kbalanced	0 311828	7				
tensile reinforcement As	0.31	Four #5 bars centere	d below joist seat for 4	ft width		
width, beff	12			it math		
	d=3.81*	- No. 5 bars centered (typ.)	Joist Girder Bearing			

Walls Out of Plane Example 2 – MDG 2016 Box 02

	k	kd	fb	Cmas	fs	Axial Force	Moment	Axial Force
			(psi)	(lb)	(psi)	(lb)	(inlb)	w/ stress axial limit
Points controlled by steel	0.01	0.04	20	5	-32000	-9915	17	-9915
	0.05	0.19	105	120	-32000	-9800	448	-9800
	0.1	0.38	221	505	-32000	-9415	1861	-9415
	0.15	0.57	351	1203	-32000	-8717	4356	-8717
	0.24	0.92	627	3443	-32000	-6477	12078	-6477
	0.22	0.84	560	2819	-32000	-7101	9960	-7101
	0.24	0.92	627	3443	-32000	-6477	12078	-6477
	0.3	1.14	851	5842	-32000	-4078	20044	-4078
Points controlled by masonry	0.311828	1.19	900	6420	-32000	-3500	21931	-3500
	0.4	1.53	900	8235	-21750	1493	27210	1493
	0.45	1.72	900	9264	-17722	3770	30022	3770
	0.5	1.91	900	10294	-14500	5799	32704	5799
Must change Cmas to trapezoid	0.55	2.10	900	11323	-11864	7645	35255	7645
when kd>t	0.6	2.29	900	12353	-9667	9356	37675	9356
Moment needs to be adjusted	0.62	2.36	900	12764	-8887	10009	38607	10009
· ·	0.65	2.48	900	13382	-7808	10961	39964	10961
	0.68	2.59	900	14000	-6824	11884	41275	11884
	0.7	2.67	900	14411	-6214	12485	42123	12485
	0.8	3.05	900	16470	-3625	15346	46047	15346
	0.9	3.43	900	18529	-1611	18029	49449	17086
Pure compression						45595	0	17086

Walls Out of Plane - Staggard Bars

Often rebar size or moment capacity can be significantly increased by using the highest depth (d) practice For 8" CMU wall and #6 bar, d can be up to 7.625 - 2 - 0.25 = 5.375 for fine grout or 5.175 for coarse grout

The two layers of bars is for load reversal

Serviceability – Walls Out-of-Plane See Tek Note 14-01B

	8	3a: Horizon	tal Section	Properties (Masonry S	panning Ver	tically)				
ontra-	Grout	Mortar	Net cross-sectional properties ^A			Average cross-sectional properties ^B					
Unit	spacing (in.)	bedding	A. (in.2/ft)	I. (in.4/ft)	S_n (in. ³ /ft)	Amg (in.2/ft)	Iavg (in.4/ft)	S_{ang} (in. ³ /ft)	r_{mg} (in.)		
Hollow	No grout	Face shell	30.0	308.7	81.0	41.5	334.0	87.6	2.84		
Hollow	No grout	Full	41.5	334.0	87.6	41.5	334.0	87.6	2.84		
100% sol	lid/solidly grouted	Full	91.5	443.3	116.3	91.5	443.3	116.3	2.20		
Hollow	16	Face shell	62.0	378.6	99.3	65.8	387.1	101.5	2.43		
Hollow	24	Face shell	51.3	355.3	93.2	57.7	369.4	96.9	2.53		
Hollow	32	Face shell	46.0	343.7	90.1	53.7	360.5	94.6	2.59		
Hollow	40	Face shell	42.8	336.7	88.3	51.2	355.2	93.2	2.63		
Hollow	48	Face shell	40.7	332.0	87.1	49.6	351.7	92.2	2.66		
Hollow	72	Face shell	37.1	324.3	85.0	46.9	345.8	90.7	2.71		
Hollow	96	Face shell	35.3	320.4	84.0	45.6	342.8	89.9	2.74		
Hollow	120	Face shell	34.3	318.0	83.4	44.8	341.0	89.5	2.76		
		3b: Vertica	Section Pr	operties (M	asonry Spa	nning Horiz	ontally)				
Hollow	No grout	Face shell	30.0	308.7	81.0	40.5	330.1	86.6	2.86		
Hollow	No grout	Full	30.0	308.7	81.0	41.5	334.0	87.6	2.84		
100% sol	lid/solidly grouted	Full	91.5	443.3	116.3	91.5	443.3	116.3	2.20		
Hollow	16	Face shell	60.8	376.0	98.6	71.2	397.4	104.2	2.36		
Hollow	24	Face shell	50.5	353.6	92.7	61.0	374.9	98.3	2.48		
Hollow	32	Face shell	45.4	342.4	89.8	55.8	363.7	95.4	2.55		
Hollow	40	Face shell	42.3	335.6	88.0	52.8	357.0	93.6	2.60		
Hollow	48	Face shell	40.3	331.1	86.9	50.7	352.5	92.5	2.64		
Hollow	96	Face shell	35.1	319.9	83.9	45.6	341.3	89.5	2.74		
Hollow	120	Face shell	34.1	3177	83 3	44.6	330.0	88.9	2.76		

🙆 Table 3-8-inch (203-mm) Single Wythe Walls, 1% in. (32 mm) Face Shells (standard)

Deflections

Quick check of deflections:

- Use wind load of 0.42 (-74.3 lb/ft), 1 ft design width = 31.2 lb/ft
- This is over a 21 ft height and ignoring parapet -
- Use the uncracked moment of inertia solid grouted in.⁴

$$\Delta = \frac{5wh^4}{384El} = \frac{5(31.2\frac{lb}{ft})(21ft)^4 1728\frac{in.^3}{ft^3}}{384(2000 \, x \, 900 \, psi)(443.3 \, in.^4)} = 0.171 \, in$$

Allowable deflection: $\frac{(21ft)(12\frac{in.}{ft})}{360} = 0.7in.$

You could use crack sections but not required.

